Картотека опытов и экспериментов

«Удивительный мир вокруг нас»

Оформили:

Коваль И. А. учитель-дефектолог, учитель-логопед Сажина А. Е. воспитатель

Опыты с песком

Цель: ознакомление детей со свойствами песка, через исследовательскую деятельность, используя опыты.

Задачи:

- Способствовать развитию представлений детей об окружающем мире неживой природы.
- Через игры и опыты обеспечить развитие умения детей определять физические свойства песка.
- Формировать умение делать самостоятельные умозаключения по результатам обследования.
- Способствовать развитию мышления, внимания, наблюдательности;
- Побудить интерес к познавательной деятельности.

Оборудование: емкость с сухим песком, емкость с мокрым песком, вода, стаканчики, подносы, лупа, листы белой бумаги, мультимедиа — проектор, листы бумаги с нарисованными картинками, клеящие карандаши.

Ход совместной деятельности:

Воспитатель: отгадайте ребята загадки:

- Что-то можно в нём зарыть, по нему люблю ходить,

И на нём поспать часок. Угадали что? - (песок)

- Из камней он появился, зёрнами на свет явился:

Жёлтый, красный, белый или светло-серый.

То морской он, то – речной. Отгадайте, кто такой? (песок).

- Он и желтый, и сыпучий, во дворе насыпан кучей,

Если хочешь, можешь брать и в «куличики» играть (песок).

- Сухой я, рыхлый и сыпучий, сырой, когда дождик помочит из тучи.

Я желтый, сладкий и золотой. Узнали, ребята, кто я такой? (песок).

Воспитатель: молодцы ребята, конечно, песок, я думаю, вы догадались, о чем мы сегодня поговорим.

Дети: о песке.

Воспитатель: и сейчас мы с вами отправимся в лабораторию, исследовать песок и ставить опыты.

Опыт № 1. «Из чего состоит песок»

Материал: стаканчики с песком, листы белой бумаги, лупы.

Ход эксперимента:

Насыпьте песок на листок бумаге, с помощью лупы рассмотрите его.

Из чего состоит песок? (зёрнышек, песчинок, камушков).

Как выглядят песчинки?

Похожи ли песчинки одна на другую?

Вывод: песок состоит из мелких песчинок, которые не прилипают друг к другу.

Опыт № 2 «Песок в воде»

Материал: стакан с водой с водой, сухой песок, ложечка.

Ход эксперимента: в стакан с водой опустить горсть сухого песка, не размешивать его. Понаблюдать, что произойдет.

Песок осядет, а на поверхности воды можно увидеть песочную пыль. Если размешать воду, песочная пыль растворится, окрасит воду.

Bывод: песок тяжелый, пыль легкая остается на поверхности, окрашивает воду.

Опыт № 3 «Песчаный конус»

Материал: сухой песок.

Ход эксперимента: взять горсть песка и пустить его струей в одну точку, образуется конус. Он растет в высоту, а у основания его площадь становится шире. Если долго сыпать песок, то в одном, то в другом месте образуется сплыв; движение песка похоже на течение. Можно подуть на песок, имитируя ветер, частички песка передвинутся.

Вывод: песок может двигаться.

Воспитатель: да, песок может двигаться, и я приглашаю вас отдохнуть и тоже подвигаться.

Опыт № 4 «Лепим из песка»

Материал: подносы с мокрым песком.

Ход эксперимента:

Пробуем лепить из мокрого песка. Дети лепят мячики.

Что же произошло с фигурками, когда песок высох?

Вывод: из мокрого песка можно лепить, но после высыхания он рассыпается.

Опыт № 5 «На мокром песке остаются следы, отпечатки»

Материал: подносы с мокрым и сухим песком.

Ход эксперимента:

Предлагаю детям на сухом песке попробовать оставить отпечатки своих ладошек.

Что происходит, видны ли отпечатки?

Затем смачиваю песок, и уже на мокром песке предлагаю оставить отпечатки.

Что мы видим? Да, вся ладошка оставила след.

Вывод: на мокром песке остаются отпечатки, а на сухом нет.

Подведение итога:

Песок состоит из песчинок.

Песчинки имеют разную форму, размер.

Песок может двигаться.

Мокрый песок принимает форму, оставляет отпечатки.

Песком можно рисовать.

Опыты с водой

Занятие – опыт «Облако в банке»

Постановка исследовательской задачи.

На прогулке пошел дождь, и мы вынуждены пойти в группу. По дороге один ребенок спросил: «А откуда берется дождь?» На что я ответила, что сегодня вечером я не только расскажу, но и вы сами сможете сделать дождь»

Распределение детей на подгруппы.

Опыт проводится вечером, перед уходом детей домой. Количество детей: 3-5 человек.

Прогнозирование результата. Это опыт – наблюдение, когда взрослый проводит сам опыт, дети наблюдают и делают вывод.

Уточнение правил техники безопасности. В этом опыте помогает младший воспитатель (приносит и убирает чайник с горячей водой).

Перед началом эксперимента говорю, что мы будем работать с горячей водой. Уточняю, чем опасна горячая вода, спрашиваю, можно ли без взрослых включать чайник и самостоятельно наливать себе чай. В итоге делается вывод:

Не трогай горячий чайник,

Не стоит делать это.

Можно ведь обжечься

Чтобы не было беды.

Лучше остеречься.

Выполнение эксперимента.

На столе стоит все необходимое для проведения опыта: банка, железная крышка, лед и чайник с кипящей или горячей водой. Дети сидят на

стульчиках на небольшом расстоянии от стола. Опыт проводит воспитатель и комментирует по ходу выполнения.

- Давайте попробуем сами сделать дождь. Нам понадобится большая стеклянная банка (мы взяли трехлитровую, металлическая крышка, чтобы закрыть ее, и что то холодное (у нас это кубики льда).
- Наливаем горячую воду в банку. Лед кладем на железную крышку, а крышку на банку.

(Налить в трехлитровую банку горячей воды (примерно на высоту 2,5 см). На железную крышку положить кусочек льда и поставить на банку).

- Посмотрите, что происходит внутри банки. (Дети высказываются).

Воспитатель подводит детей к следующему выводу:

- Воздух внутри банки, поднимаясь вверх, охлаждается. А пар, который содержится в воздухе, образует облако. Так и в природе происходит: капли, нагревшись на земле, поднимаются вверх. Там им становится холодно, и они жмутся друг к другу, образуя облака. Встречаясь вместе, они увеличиваются, становятся тяжелыми и падают на землю в виде дождя. Посмотрите, как стекают капли по стенкам банки. Воспитатель обращает внимание детей на то, что происходит со льдом на крышке и спрашивает детей, почему лед тает, почему рядом со льдом появилась вода. (В тепле лед тает, лед – это замершая вода).

Фиксирование результатов эксперимента.

-Итак, давайте проговорим, что мы использовали для проведения опыта и что мы делали.

(Воспитатель показывает схему опыта).

Формулировка выводов

- Так откуда идет дождь?

Опыты с бумагой

Она бывает документом, Салфеткой, фантиком, конвертом, Письмом, обоями, билетом, Альбомом, книгой и при этом Она бывает оригами.

Что это? Догадайтесь сами! (БУМАГА).

Опыт №1 "Бумага мнется"

- А сейчас проведем опыт: возьмите по одному листу бумаги разной плотности и сомните ее. У всех бумага смялась? А всем легко ее было смять? Как вы думаете, почему у одних бумага легко смялась, а у других нет?

— Значит, делаем **вывод**: бумага мнется, чем толще бумага, тем она труднее мнется, а теперь попробуйте разгладить лист бумаги (полезно мять бумагу для поделок, нельзя мять книги и тетради) <u>Это первое свойство бумаги.</u>

Опыт №2 "Бумага рвется"

Возьмите бумагу и начните рвать. Какую бумагу легче рвать, плотную или тонкую?

Вывод: картон толще, чем бумага. Бумага рвется в зависимости от толщины: чем тоньше бумага, (дети договаривают), тем легче она рвётся.

Второе свойство бумаги - бумага рвется.

Опыт 3 "Бумага режется"

- Сейчас мы попробуем разрезать два вида бумаги картон и тонкую бумагу. Сначала режем тонкую бумагу. Теперь попробуем разрезать картон (толстую бумагу). Какую бумагу было легче резать? Какую труднее? Какой сделаем вывод? Куда поставим значок?

Вывод: картон толще, чем бумага. Бумага режется в зависимости от толщины: тонкая бумага режется легче, картон – труднее.

Третье свойство – бумагу можно разрезать.

Опыт 4 "Бумага намокает"

- Опустите в воду сначала салфетку, затем альбомный листок бумаги. Что произошло? Вся бумага намокла? Какая бумага намокла быстрее? (Ответы детей).

Вывод: тонкая бумага намокла <u>быстрее и распалась, бумага потолще тоже намокает</u>, но ей потребуется больше времени. Дети: бумага боится воды, бумага материал непрочный.

<u>Четвертое свойство – бумага намокает.</u>

Опыт №5, "Бумага впитывает масло"

-Намочите ватную палочку в масле и оставьте ею след на бумаге. Что произошло?

-Дети: бумага впитывает масло.

Вывод: масло пропитывает бумагу.

Пятое свойство – растительное масло пропитывает бумагу.

Опыт №7 "Бумага издает звук"

- Возьмем тонкий лист бумаги и выполним движения — стирка белья, а теперь картон. Бумага шуршит, скрипит, звук разный.

Вывод при смятии, трении – бумага издает звук – шестое свойство.

Опыт №8 "Бумага летает"

Дыхательная гимнастика по методике А.Н. Стрельниковой.

Может ли бумага летать? Для этого нужно подуть на полоски бумаги. Взяли их в руки. Приготовились. Правила выполнения упражнений гимнастики: как надо дышать?

Дыхательная гимнастика.

Сейчас мы подуем на бумажные комочки. Понаблюдаем за их движением.

На комочек дуй легонько,

Будет двигаться тихонько.

На комочек дуй сильнее,

Побежит он веселее.

Вывод полоски бумаги легкие, поэтому, когда дует ветер, они разлетаются – седьмое свойство.

Опыт №9 "Бумага горит "

- Что произойдёт, если бумагу поднести к огню? ответы. Правильно, бумага загорится.
- -А это очень опасно, может быть пожар, можно получить ожог, травму. Поэтому, какой вывод мы можем сделать? Надо быть осторожным с огнём, нельзя подходить к нему с бумагой.

Вывод: бумага легко возгорается – восьмое свойство бумаги.

Рефлексия.

Отношение детей к деятельности.

- Ребята, что вы нового узнали о бумаге? Что вам больше всего понравилась выполнять? Бумага бывает по своему строению тонкая и толстая.

Выводы исследований.

- 1. Бумага мнется.
- 2. Бумага рвется.
- 3. Бумага можно резать.
- 4. Бумага намокает.
- 5. Бумага впитывает масло.
- 6. При смятии бумага издает звук.
- 7. Бумага бывает по своему строению тонкая и толстая.
- 8. Летает.
- 9. Бумага горит.
- 10. Из бумаги можно делать поделки.

Опыты с цветом

Цвет существует независимо от нашего сознания и отражается в нем посредством зрительных ощущений. **Цвет** служит мощным стимулятором эмоционального и интеллектуального **развития детей**.

Чувство красоты цвета и вообще вкус к цвету можно и необходимо воспитывать. На раннем этапе знакомства с цветом важно сохранить у ребят чувство удивления, восторга, праздника, чтобы процесс изучения проходил в более интересной и запоминающейся форме. А учитывая то, что в дошкольном возрасте дети не усидчивы, часто переключают своё внимание с одного вида деятельности на другой, то экспериментирование — это наиболее эффективный метод работы в данном проекте, так как детям объяснить то или иное явление намного проще не с помощью фактов из литературы или наших жизненных наблюдений, а именно посредством наглядного примера.

Опыт 1: Получение нового цвета

Вовремя этого эксперимента можно пронаблюдать процесс получения нового цвета при смешивании двух цветов: желтого и синего.

Понадобится: Три стакана, пищевые красители, две салфетки

Ход: возьмите три стакана: в первый налейте воду и добавьте синий краситель, во второй — воду и желтый краситель. Третий (пустой стакан) поставьте между стаканами с красителями. Теперь возьмите две салфетки, сверните и опустите в стаканы так, чтобы один их конец был в стакане с красителем, а второй - в пустом стакане. Начинаем следить как окрашенная вода, впитываясь в салфетки, будет переходить в пустой стакан и смешиваться. По истечении определенного времени замечаем, что в пустом стакане начала появляться вода, окрашенная в зеленый цвет. Благодаря этому эксперименту дети заинтересуются процессом смешивания красок.

Опыт 2. Крашеные цветы

Понадобится: цветы с белыми лепестками, емкости для воды, ножик, вода, пищевые красители.

Ход: емкости нужно наполнить водой и в каждую добавить определенный краситель. Один цветок нужно отложить в сторону, а остальным подрезать стебли острым ножом. Сделать это нужно в теплой воде, наискосок под углом 45 градусов, на 2 см. При перемещении цветов в емкости с красителями, нужно зажать срез пальцем, чтобы не образовались воздушные пробки. Поставив цветы в емкости с красителями, нужно взять отложенный цветов. Разрежьте его стебель вдоль на две части до центра. Одну часть стебля поместите в емкость красного цвета, а вторую – в емкость синего или зеленого. Результат: вода поднимется по стеблям и окрасит лепестки в разные цвета. Произойдет это примерно через сутки. Поговорим? Обследуйте каждую часть цветка, чтобы увидеть, как поднималась вода. Закрашены ли стебель и листья? Как долго сохранится цвет?.

Опыт 3: «Хроматография цвета»

Смешать то цвета легко, а вот разделить можно ли? Попробуем разложить цвета на составляющие.

Понадобится: салфетка, фломастеры, стакан с водой

Ход: в двух сантиметрах от края рисуем фломастером полоску. Опускаем край салфетки на 1 см в воду, чтобы вода непосредственно не намочила след от фломастера. Бумагу достаем и подвешиваем вертикально.

Объяснение: вода, поднимаясь по бумаге, увлекает за собой краску. Но разные частицы краски двигаются с различной скоростью, и поэтому визуально краска раскладывается на составляющие ее компоненты. Таким образом, мы можем узнать, с помощью каких цветов получен конкретный оттенок. Этот метод называется хроматографией и широко используется в промышленности и научных лабораториях для разложения веществ на составляющие. Получается, что, воспользовавшись методом хроматографии, можно посмотреть из каких цветов состоят черный, фиолетовый, коричневый и другие сложные цвета.

Опыт 4: «Хроматография на ткани»

С помощью фломастеров легко и весело можно создать уникальные и удивительные узоры на ткани.

Понадобится: стакан, пульверизатор с водой, фломастеры, кусочки белой ткани, резиночки.

Ход: на стакан положите ткань, закрепите ее резиночками. Нарисуйте узоры из точек разноцветными фломастерами. В центр рисунка капните несколько капель воды из шприца, можно из пипетки. Наблюдаем, как цвета взрываются на наших глазах. Происходят замечательные превращения. Спустя несколько минут можно снять и просушить ткань. Любуемся и наслаждаемся результатом.

Опыт №5. Лава - лампа

Понадобится: Два фужера, две таблетки шипучего аспирина, подсолнечное масло, два вида сока.

Ход: стаканы заполняются соком примерно на 2/3. Затем добавляется подсолнечное масло так, чтобы до края стакана осталось сантиметра три. В каждый стакан бросается таблетка аспирина. Результат: содержимое стаканов начнет шипеть, бурлить, поднимется пена. Поговорим? Какую реакцию вызывает аспирин? Почему? Смешиваются ли слои сока и масла?

<u>Опыт №6. Цветные капли</u>

Понадобится: емкость с водой, емкости для смешивания, клей БФ, зубочистки, акриловые краски.

Ход: клей БФ выдавливается в емкости. В каждую емкость добавляется определенный краситель. А затем поочередно помещаются в воду. Результат: Цветные капли притягиваются друг к другу, образуя многоцветные островки.

Поговорим? Жидкости, имеющие одинаковую плотность, притягиваются, а с разной плотностью отталкиваются.

Опыт 7: Волны в бутылке

Понадобится: подсолнечное масло, вода, бутылка, пищевой краситель.

Ход: в бутылку наливается вода (чуть больше половины) и смешивается с красителем. Затем добавляется ¹/₄ стакана растительного масла. Бутылка тщательно закручивается и кладется на бок, чтобы масло поднялось на поверхность. Начинаем раскачивать бутылку вперед и назад, образуя тем самым волны. Результат: на маслянистой поверхности образуются волны, как на море. Поговорим? Плотность масла меньше, чем плотность воды. Поэтому оно находится на поверхности. Волны — это верхний слой воды, движущийся из-за направления ветра. Нижние слои воды остаются неподвижными.

Опыт 8: Цветной лед

Понадобится: Цветные кубики льда, стакан, растительное масло

Ход: нужно несколько кубиков цветного льда опустить в баночку с растительным или детским маслом. По мере того, как лед будет таять, его цветные капельки будут опускаться на дно банки. Опыт очень зрелищным получается.

Опыт 9: Цвет в молоке

Понадобится: молоко, пищевые красители, ватная палочка, средство для мытья посуды.

Ход: в молоко насыпается немного пищевого красителя. После короткого ожидания молоко начинает двигаться. Получаются узоры, полоски, закрученные линии. Можно добавить другой цвет, подуть на молоко. Затем ватная палочка обмакивается в средство для мытья посуды и опускается в центр тарелки. Красители начинают интенсивнее двигаться, перемешиваться, образуя круги. Результат: в тарелке образуются различные узоры, спирали, круги, пятна. Поговорим? Молоко состоит из молекул жира. При появлении средства молекулы разрываются, что приводит к их быстрому движению. Поэтому и перемешиваются красители.

Опыт 10: Сладкий и цветной

Понадобится: сахар, разноцветные пищевые краски, 5 стеклянных стаканов, столовая ложка, шприц

Ход: в каждый стакан добавляется разное количество ложек сахара. В первый стакан одна ложка, во второй — две и так далее. Пятый стакан остается пустым. В стаканы, выставленные по порядку, наливается по 3 столовых ложки воды и перемешивается. Затем в каждый стакан добавляется несколько капель одной краски и перемешивается. В первый красную, во второй — желтую, в третий — зеленую, а в четвертый — синюю. В чистый

стакан с прозрачной водой начинаем добавлять содержимое стаканов, начиная с красного, затем желтый и по порядку. Добавлять следует очень аккуратно. Результат: в стакане образуется 4 разноцветных слоя. Поговорим? Большее количество сахара повышает плотность воды. Следовательно, этот слой будет в стакане самым низким. Меньше всего сахара в красной жидкости, поэтому она окажется наверху.

Опыт 11: Радуга

Понадобится: лист белой бумаги, зеркало, фонарик, емкость с водой

Ход: на дно емкости кладется зеркало. Свет фонарика направляется на зеркало. Свет от него необходимо поймать на бумагу. Результат: на бумаге будет видна радуга. Поговорим? Свет является источником цвета. Нет красок и фломастеров, чтобы раскрасить воду, лист или фонарик, но вдруг появляется радуга. Это спектр цветов. Какие ты знаешь цвета?

Опыты со статическим электричеством

Статическое электричество — одно из интереснейших явлений природы. Оно окружает нас со всех сторон и очень важно объяснить ребёнку основные его закономерности. Легче всего сделать это с помощью простого эксперимента. Многие считают, что это затратное или даже опасное для ребёнка занятие. Но это совсем не так. Показать вашему ребенку силу отрицательно и положительно заряженных частиц можно очень просто и совершенно безопасно.

В нашей жизни мы постоянно встречаемся с электричеством — это разнообразные электроприборы (телевизоры, компьютеры, электрочайники и т.д.). Электричество очень опасно и шутить с ним нельзя. В работе с электроприборами необходимо соблюдать технику безопасности. Но есть электричество неопасное, тихое, незаметное. Оно живет повсюду, само по себе, и если его поймать, то с ним можно очень интересно поиграть. Но как его можно получить? И мы решили поближе познакомить детей с образованием этой энергии, а называется оно - статическим.

Статическое электричество — это форма электричества, которое не течет, — это «отдыхающее» электричество. Все предметы имеют положительный электрический заряд и отрицательный заряд.

Статическое электричество легко получить, если потереть один о другой два предмета (сделанные из определенных материалов): при этом электроны с одного предмета переходят на другой, в результате чего один предмет приобретает положительный заряд, а другой отрицательный.

Положительно и отрицательно заряженные объекты притягиваются друг к другу, как магнит, — поскольку один из них желает сбросить лишние электроны, а другой, наоборот, получить их. Когда статическое электричество становится достаточно мощным, электроны перескакивают с

одного предмета на другой в таком количестве, что это порождает видимую электрическую искру (электрический разряд).

А если одним из объектов, между которыми перескакивают электроны, являетесь вы, то вы почувствуете легкий «удар». Молния, между прочим, представляет собой гигантскую электрическую искру, электрический разряд в результате накапливания статического электричества в туче во время грозы.

Задачи исследования.

- Узнать, что собой представляет статическое электричество.
- Выяснить причину возникновения статического электричества.
- Узнайте о положительно и отрицательно заряженных частицах, используя несколько основных предметов, которые мы часто используем в быту.

1. Опыт «Статическое электричество»

Цель. Узнать о положительно и отрицательно заряженных частицах, используя несколько основных предметов, которые мы часто используете в быту.

Материал и оборудование:

Два воздушных шарика

Головные волосы

Алюминиевая банка

Шерстяная ткань

Начинаем эксперимент:

Потрём шерстяной тканью оба воздушных шара против шерсти. Поднесём их друг к другу. *Что происходит?*

Потрём один из шаров о наши волосы, немного поднимем шарик над волосами. *Что происходит?*

Положим алюминиевую банку на бок на столе, поднесём к ней воздушный шар, который мы потёрли о волосы. Как только мы поднесли шарик к банке, медленно отводим его. *Что происходит?*

В первом случае воздушные шары будут отталкиваться друг от друга. Во втором случае шарик будет притягивать наши волосы к себе.

В третьем случае банка будет катиться за шариком. Как это произошло?

Протирая шары шерстяной тканью или нашими волосами, мы создаем на нем статическое электричество. Оно включает в себя отрицательно и положительно заряженные частицы. Когда мы трем воздушные шары против наших волос или ткани, шарик заряжается отрицательно.

2. Опыт «Понятие об электрических зарядах»

Цель: посмотреть, что будет в результате контакта между двумя различными предметами, возможно разделение электрических разрядов.

Материал и оборудование:

Воздушный шарик.

Шерстяной шарф.

Начинаем эксперимент:

Надуем небольшой воздушный шарик. Потрем шарик о шерстяной шарф и попробуем дотронуться шариком до различных предметов в комнате. Получился настоящий фокус! Шарик начинает прилипать буквально ко всем предметам в комнате: к шкафу, к стенке, а самое главное – ко мне. *Почему?*

Это объясняется тем, что все предметы имеют определенный электрический заряд. Но есть предметы, например - шерсть, которые очень легко теряют свои электроны. В результате контакта между шариком и шерстяным шарфом происходит разделение электрических разрядов. Часть электронов с шерсти перейдет на шарик, и он приобретет отрицательный статический заряд. Когда мы приближаем отрицательно заряженный шарик к некоторым нейтральным предметам, электроны в этих предметах начинают отталкиваться от электронов шарика и перемещаться на противоположную сторону предмета. Таким образом, верхняя сторона предмета, обращенная к шарику, становится заряженной положительно, и шарик начнет притягивать предмет к себе. Но если подождать подольше, электроны начнут переходить с шарика на предмет. Таким образом, через некоторое время шарик и притягиваемые им предметы снова станут нейтральными и перестанут притягиваться друг к другу. Шарик упадет.

3. Опыт «Танцующая фольга»

Цель: узнать, что разноименные статические заряды притягиваются друг к другу, а одноименные отталкиваются.

Материал и оборудование:

Тонкая алюминиевая фольга (обертка от шоколада).

Ножницы.

Пластмассовая расческа.

Бумажное полотенце.

Начинаем эксперимент:

Нарежем алюминиевую фольгу (блестящую обертку от шоколада или конфет) очень узкими и длинными полосками. Высыпаем полоски фольги на бумажное полотенце. Проведем несколько раз пластмассовой расческой по

своим волосам, а затем поднесем ее вплотную к полоскам фольги. Полоски начнут «танцевать». Почему так происходит?

Волосы, о которые мы потерли пластмассовую расческу, очень легко теряют свои электроны. Их часть перешла на расческу, и она приобрела отрицательный статический заряд. Когда мы приблизили расческу к полоскам фольги, электроны в ней начали отталкиваться от электронов расчески и перемещаться на противоположную сторону полоски. Таким образом, одна сторона полоски оказалась заряжена положительно, и расческа начала притягивать ее к себе. Другая сторона полоски приобрела отрицательный заряд. легкая полоска фольги, притягиваясь, поднимается в воздух, переворачивается и оказывается повернутой к расческе другой стороной, с отрицательным зарядом. В этот момент она отталкивается от расчески. Процесс притягивания и отталкивания полосок идет непрерывно, создается впечатление, что «фольга танцует».

4. Опыт «Прыгающие хлопья»

Цель: узнать, как в результате контакта между двумя различными предметами возможно разделение статических электрических разрядов.

Материал и оборудование:

Чайная ложка хрустящих овсяных хлопьев.

Бумажное полотенце.

Воздушный шарик.

Шерстяной шарф.

Начинаем эксперимент:

Постелем на столе бумажное полотенце и насыплем на него хлопья. Надуем небольшой воздушный шарик. Потрем шарик о шерстяной шарф, затем поднесем его к хлопьям, не касаясь их. Хлопья начинают подпрыгивать и приклеиваться к шарику. *Почему?*

В результате контакта между шариком и шерстяным шарфом произошло разделение статических электрических зарядов. Часть электронов с шерсти перешло на шарик, и он приобрел отрицательный электрический заряд. Когда мы поднесли шарик к хлопьям, электроны в них начали отталкиваться от электронов шарика и перемещаться на противоположную сторону. Таким образом, верхняя сторона хлопьев, обращенная к шарику, оказалась заряжена положительно, и шарик начал притягивать легкие хлопья к себе.

5. Опыт «Поможем Золушке. Способ разделения перемешанных соли и перца».

Цель: узнать, что в результате контакта не во всех предметах возможно разделение статических электрических разрядов.

Материал и оборудование:

Чайная ложка молотого перца.

Чайная ложка крупной соли.

Бумажное полотенце.

Воздушный шарик.

Шерстяной шарф.

Начинаем эксперимент:

Расстелем на столе бумажное полотенце. Высыплем на него перец и соль и тщательно их перемешаем. Можно ли теперь разделить соль и перец? Очевидно, что сделать это весьма затруднительно! Надуем небольшой воздушный шарик. Потрем шарик о шерстяной шарф, затем поднесем его к смеси соли и перца. Произойдет чудо! Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. ближайшая Следовательно, часть перчинок, К шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах. Соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.

6. Опыт «Ожившие волосы».

Цель: посмотреть на проявление одного вида электричества.

Материал.

Расческа

Шерстяной шарф

Начинаем эксперимент:

Берем расческу и трем ею о шерстяной шарф, дотрагиваемся до волос. Волосы «оживают», становятся «дыбом». *Почему так происходит?*

Волосы «оживают» под действием статического электричества, возникающего из-за трения расчески с шерстяной тканью рубашки.

Вывод: в результате контакта между двумя различными предметами возможно разделение электрических разрядов. (Приложение 7)

7. Опыт «Электрический спрут»

Цель: посмотреть на проявление одного вида электричества.

Материал.

Макет спрута из бумаги Шерстяной шарф

Начинаем эксперимент:

Из бумаги отрезали полоску и нарезали 8 полосок-щупалец. Хорошенько погладили спрутика шерстяным шарфом. Наэлектризованного спрута подняли и скрутили в кольцо не разрезанную сторону листа. Щупальца растопырились в стороны! Если засунуть руку снизу внутрь колокола, щупальца немедленно ее схватят! Почему так происходит? «щупальца» спрута получили отрицательно заряженные частицы, поэтому оно отталкиваются друг от друга.